高三数学说课稿

时间:2024-04-04 16:47:17
高三数学说课稿12篇

高三数学说课稿12篇

作为一名优秀的教育工作者,就有可能用到说课稿,说课稿可以帮助我们提高教学效果。那么写说课稿需要注意哪些问题呢?下面是小编帮大家整理的高三数学说课稿,仅供参考,希望能够帮助到大家。

高三数学说课稿1

教学目的:使学生熟练掌握奇偶函数的判定以及奇偶函数性质的灵活应用;

培养学生化归、分类以及数形结合等数学思想;提高学生分析、解题的能力。

教学过程:

一、知识要点回顾

1、奇偶函数的定义:应注意两点:①定义域在数轴上关于原点对称是函数为奇偶函数的必要非充分条件。②f(x)f(x)或f(x)f(x)是定义域上的恒等式(对定义域中任一x均成立)。

2、判定函数奇偶性的方法(首先注意定义域是否为关于原点的对称区间)

①定义法判定(有时需将函数化简,或应用定义的变式:f(x)f(x)f(x)f(x)0f(x)1(f(x)0)。f(x)

②图象法。

③性质法。

3、奇偶函数的性质及其应用

①奇偶函数的定义域关于原点对称;②奇函数图象关于原点对称,并且在两个关于原点对称的区间上有相同的单调性;③偶函数图象关于y轴对称,并且在两个关于原点对称的区间上单调性相反;④若奇函数f(x)的定义域包含0,则f(0)=0;⑤f(x)为偶函数,则f(x)f(x);⑥y=f(x+a)为偶函数

而偶函数y=f(x ……此处隐藏26110个字……计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

2、例题剖析,强化概念

例1、判断下列对应是否为函数:

(1)

(2)

[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

例2、(1);

(2)y=x—1;

(3);

(4)

[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。

例3、试求下列函数的定义域与值域:

(1)

(2)

[设计意图]让学体会理解函数的三要素:定义域、值域、对应法则。

4、巩固练习,运用概念

书本练习P25:练习1,2,3。P28:练习1,2

布置作业:A组:1、2。B组1。

5、课堂小结,提升思想

引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

6、板书设计:借助小黑板,时间的合理分配等(略)

五、教学评价及反思

我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破,教学时间分配合理,为使课堂形式更加丰富,也可将某些问题改成判断题。在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理。

本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景(结合各学校的硬件条件)。

《高三数学说课稿12篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式