定理与证明教案

时间:2023-12-02 09:21:22
定理与证明教案

定理与证明教案

在日复一日的学习、工作或生活中,大家都不可避免地要接触到证明吧,证明是证明某人的身份、经历或某件事情的真实情况时所使用的一种凭证。我们该怎么拟定证明呢?以下是小编帮大家整理的定理与证明教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

定理与证明教案1

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点

等边三角形的判定定理和直角三角形的性质定理。

教学难点

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法

教学后记

教学内容及过程

教师活动学生活动

一、定理:一个角等于60°的等腰三角形是等边三角形

1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质

1.让学生拼摆 ……此处隐藏8656个字……法的含义,让学生了解。

11.小结这两个课时的内容。

作业:

同步练习

板书设计:

1.积极思考,回忆以前所学知识,联想新问题。

2.认真观看例1图形中线段的关系,积极思考,认真听讲。

3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

11.体会老师的讲解,并根据小结记忆掌握知识。

(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

《定理与证明教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式